Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 337: 122606, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37742865

RESUMO

Cadmium (Cd) is known as a widespread environmental neurotoxic pollutant. Cd exposure is recently recognized as an etiological factor of Parkinson's disease (PD) in humans. However, the mechanism underlying Cd neurotoxicity in relation to Parkinsonism pathogenesis is unclear. In our present study, C57BL/6 J mice were exposed to 100 mg/L CdCl2 in drinking water for 8 weeks. It was found Cd exposure caused motor deficits, decreased DA neurons and induced neuropathological changes in the midbrain. Non-targeted lipidomic analysis uncovered that Cd exposure altered lipid profile, increased the content of proinflammatory sphingolipid ceramides (Cer), sphingomyelin (SM) and ganglioside (GM3) in the midbrain. In consistency with increased proinflammatory lipids, the mRNA levels of genes encoding sphingolipids biosynthesis in the midbrain were dysregulated by Cd exposure. Neuroinflammation in the midbrain was evinced by the up-regulation of proinflammatory cytokines at mRNA and protein levels. Blood Cd contents and lipid metabolites in Parkinsonism patients by ICP-MS and LC-MS/MS analyses demonstrated that elevated blood Cd concentration and proinflammatory lipid metabolites were positively associated with the score of Unified Parkinson's Disease Rating Scale (UPDRS). 3 ceramide metabolites in the blood showed good specificity as the candidate biomarkers to predict and monitor Parkinsonism and Cd neurotoxicity (AUC>0.7, p < 0.01). In summary, our present study uncovered that perturbed sphingomyelin lipid metabolism is related to the Parkinsonism pathogenesis and Cd neurotoxicity, partially compensated for the deficiency in particular metabolic biomarkers for Parkinsonism in relation to Cd exposure, and emphasized the necessity of reducing Cd exposure at population level.


Assuntos
Cádmio , Doença de Parkinson , Humanos , Camundongos , Animais , Cádmio/toxicidade , Esfingolipídeos , Doenças Neuroinflamatórias , Esfingomielinas , Camundongos Endogâmicos C57BL , Cromatografia Líquida , Espectrometria de Massas em Tandem , Mesencéfalo , Ceramidas , RNA Mensageiro , Biomarcadores
2.
Ecotoxicol Environ Saf ; 265: 115517, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37776818

RESUMO

Cadmium is a highly ubiquitous environmental pollutant that poses a serious threat to human health. In this study, we assessed the cardiotoxicity of Cd exposure and explored the possible mechanisms by which Cd exerts its toxic effects. The results demonstrated that exposure to Cd via drinking water containing CdCl2 10 mg/dL for eight consecutive weeks induced cardiac injury in C57BL/6J mice. The histopathological changes of myocardial hemolysis, widening of myocardial space, and fracture of myocardial fiber were observed. Meanwhile, elevated levels of cardiac enzyme markers and up-regulation of pro-apoptotic genes also indicated cardiac injury after Cd exposure. Non-targeted lipidomic analysis demonstrated that Cd exposure altered cardiac lipid metabolism, resulted in an increase in pro-inflammatory lipids, and changed lipid distribution abundance. In addition, Cd exposure affected the secretion of inflammatory cytokines by activating the NF-κB signaling pathway, leading to cardiac inflammation in mice. Taken together, results of our present study expand our understanding of Cd cardiotoxicity at the lipidomic level and provide new experimental evidence for uncovering the association of Cd exposure with cardiovascular diseases.

4.
Ecotoxicol Environ Saf ; 258: 114986, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37163905

RESUMO

Cadmium (Cd) is a well-known environmental pollutant with high toxicity. Despite a variety of studies have demonstrated that Cd exposure induces multiple organ damages in humans, there is still a lack of knowledge of Cd induced skeletal muscle impairment. Exercise is a non-invasive, effective intervention to improve human health and combat diseases. In this study, we aimed to evaluate the toxic effects of Cd exposure on skeletal muscle function and explore the possibility of exercise for attenuating skeletal muscle toxicity of chronic Cd exposure. C57BL/6J mice were exposed to Cd via drinking water containing CdCl2 10 mg/dL for 8 weeks while a moderate exercise was daily induced by a motorized treadmill to mice. It was found that Cd exposure significantly reduced the ratio of gastrocnemius and body weight, decreased mouse exercise capacity, weakened muscle strength, promoted lipid accumulation and up-regulated pro-apoptotic genes in the skeletal muscle. Non-targeted lipidomics analysis indicated that Cd exposure disturbed lipid metabolism, altered lipid signatures and elevated pro-inflammatory lipid species in the skeletal muscle. Moreover, Cd exposure evoked an intense inflammatory response in the skeletal muscle by up-regulating pro-inflammatory cytokine production such as Eotaxin (CCL11), TNF-α, IL-1ß, IL-6, RANTES (CCL5) and so on. Notably, treadmill exercise effectively protected against Cd induced skeletal muscle impairment indicated by the effects of inhibiting lipid metabolism disturbance, suppressing pro-inflammatory cytokine production and preserving skeletal muscle function. These results demonstrated that environment relevant Cd exposure impairs skeletal muscle function and exercise effectively antagonizes the Cd toxicity in the skeletal muscle and preserves skeletal muscle function. This study provided the novel evidence for unraveling Cd toxicity on the skeletal muscle function and highlighted the possibility of considering exercise as a countermeasure for Cd induced skeletal muscle impairment at population level.


Assuntos
Cádmio , Músculo Esquelético , Humanos , Animais , Camundongos , Cádmio/toxicidade , Cádmio/metabolismo , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Lipídeos
5.
Environ Int ; 169: 107512, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36108500

RESUMO

Paraquat (PQ) is the most widely used herbicide in the world and a well-known potent neurotoxin for humans. PQ exposure has been linked to increase the risk of Parkinson's disease (PD). However, the mechanism underlying its neurotoxic effects in PD pathogenesis is unclear. In our present study, C57BL/6J mice treated with PQ manifested severe motor deficits indicated by the significant reductions in suspension score, latency to fall from rotarod, and grip strength at 8 weeks after PQ exposure. Pathological hallmarks of Parkinsonism in the midbrain such as dopaminergic neuron loss, increased α-synuclein protein, and dysregulated PD-related genes were observed. Non-targeted lipidome analysis demonstrated that PQ exposure alters lipid profile and abundance, increases pro-inflammatory lipids.27 significantly altered subclasses of lipids belonged to 6 different lipid categories. Glycerophospholipids, sphingolipids, and glycerides were the most abundant lipids. Abundance of pro-inflammatory lipids such as Cer, LPC, LPS, and LPI was significantly increased in the midbrain. mRNA expressions of genes regulating ceramide biosynthesis in the midbrain were markedly up-regulated. Moreover, PQ exposure increased serum pro-inflammatory cytokines and provoked neuroinflammation in the midbrain. Pro-inflammatory lipids and cytokines in the midbrain were positively correlated with motor deficits. PQ poisoning in humans significantly also elevated serum pro-inflammatory cytokines and induced an intense systemic inflammation. In summary, we presented initial investigations of PQ induced molecular events related to the PD pathogenesis, capturing aspects of disturbed lipid metabolism, neuroinflammation, impairment of dopaminergic neurons in the midbrain, and an intense systemic inflammation. These neurotoxic effects of PQ exposure may mechanistically contribute to the pathogenesis of PQ induced Parkinsonism. Results of this study also strongly support the hypothesis that ever-increasing prevalence of Parkinson's disease is etiologically linked to the health risk of exposure to neurotoxic environmental pollutants.


Assuntos
Poluentes Ambientais , Herbicidas , Síndromes Neurotóxicas , Doença de Parkinson , Transtornos Parkinsonianos , Animais , Ceramidas/farmacologia , Citocinas , Poluentes Ambientais/toxicidade , Glicerídeos/farmacologia , Glicerofosfolipídeos/farmacologia , Herbicidas/toxicidade , Humanos , Lipopolissacarídeos/farmacologia , Mesencéfalo , Camundongos , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias , Síndromes Neurotóxicas/etiologia , Neurotoxinas , Paraquat/toxicidade , Doença de Parkinson/etiologia , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/complicações , RNA Mensageiro , Esfingolipídeos/farmacologia , alfa-Sinucleína/farmacologia
6.
Sci Total Environ ; 849: 157819, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-35931150

RESUMO

Cadmium (Cd) is a widely distributed endocrine disruptor and has been reported to be closely correlated to the pathogenesis of diabetes. Since pancreatic ß-cells loss and dysfunction are central to pathogenesis of diabetes, studying Cd toxicity on pancreatic ß-cells and its molecular mechanism is an important scientific issue. However, less attention has been payed to study how Cd induces pancreatic ß-cells death and dysfunction in recent years. Thus, our study aims to explore the toxic mechanism of Cd treatment on pancreatic ß-cells using both cellular and animal models. Firstly, it was confirmed that Cd induced decreased cell viability and insulin secretion in a dose-and time-dependent manner in MIN6 cells. To explore the underlying mechanism, transcriptomic analysis was employed to screen the differentially expressed genes and disturbed metabolic pathways. Go and KEGG analysis showed that Cd exposure triggered ferroptosis process in MIN6 cells. We further validated that Cd led to GSH depletion, Gpx4 reduction, lipid peroxidation, mitochondrial membrane potential loss and ultrastructural damage at mitochondrial level. Since immune system process was also perturbed based on GO analysis, we found that Cd activated Ager/Pkc/p65 inflammatory process. Moreover, ferroptosis inhibitor Fer-1 could effectively antagonized the activation of Ager-mediated immune process. It was also revealed that Cd induced iron accumulation as well as decreased Gpx4 expression in mice islets. We also uncovered that Cd led to systemic and pancreatic inflammation as early as third week after Cd exposure. Our study emphasizes the importance of ferroptotic cell death on Cd-induced systemic chronic inflammation. A novel target is provided to prevent Cd-induced pancreatic ß-cells dysfunction and improve the chronic inflammatory state for prediabetes prevention.


Assuntos
Disruptores Endócrinos , Ferroptose , Animais , Cádmio/toxicidade , Inflamação/induzido quimicamente , Ferro/metabolismo , Camundongos
7.
Environ Int ; 161: 107139, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35172228

RESUMO

Cd exposure has been demonstrated to induce a variety of metabolic disorders accompanied with imbalance of glucose and lipid homeostasis. The metabolic toxicity of Cd exposure at metabolome-wide level remains elusive. In our study, we demonstrated that Cd exposure via drinking water increased blood glucose levels, decreased serum insulin levels, led to glucose intolerance and suppressed insulin expression in the pancreas of C57/6J mice. Cd exposure significantly inhibited cell viability and suppressed insulin secretion in MIN6 cells in vitro. Since pancreatic ß-cells are the only source of insulin production in the body and play a pivotal role in modulating glucose and lipid metabolisms, we further delineated the metabolomic signatures of Cd exposure in insulin-secreting MIN6 cells by using non-target metabolomics. PCA and OPLS-DA analysis clearly suggested that Cd exposure led to a marked metabolic alteration in MIN6 cells. 76 perturbed metabolites were identified after Cd exposure. Classification of metabolites suggested that Cd perturbed metabolites belong to nucleosides, nucleotides and analogues, organic acids and derivatives, and lipids and lipid-like molecules. 28 perturbed metabolites existed in mitochondrion, suggesting mitochondrion as the major target organelle in metabolic toxicity of Cd exposure. KEGG pathway analysis revealed that 20 metabolic pathways were disturbed by Cd exposure. Mitochondrial TCA cycle and glycerophospholipid metabolism were remarkably disturbed. The mRNA expressions of genes in mitochondrial TCA cycle and fatty acid oxidation in pancreas and MIN6 cells were significantly dysregulated by Cd exposure. Disturbances in mitochondrial TCA cycle and glycerophospholipid metabolism result in producing perturbed metabolites in pancreatic ß-cells. Moreover, 14 perturbed metabolites identified in MIN6 cells co-existed in the urine of Cd exposed workers. 11 biomarkers of diabetes mellitus were also found to be significantly altered in the urine of Cd exposed workers. In conclusion, findings of this study greatly extend our understanding of metabolic toxicity of Cd exposure in pancreatic ß-cells at metabolome-wide level and offer some new clues for linking Cd exposure to development of diabetes mellitus. Results of this study also support the notion that Cd induced metabolic toxicity could be monitored by examining perturbed urinary metabolites in humans and highlight the significance of reducing Cd exposure via drinking water at population level.


Assuntos
Células Secretoras de Insulina , Animais , Cádmio/metabolismo , Cádmio/toxicidade , Humanos , Insulina/metabolismo , Secreção de Insulina , Metabolômica , Camundongos
8.
J Trace Elem Med Biol ; 71: 126952, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35183883

RESUMO

BACKGROUND: Cadmium (Cd) exposure is a worldwide environmental threat to the public health and participates in the pathogenesis of multiple diseases. Epidemiologic research have established a direct relation between Cd exposure and diabetes development in humans. Although pancreatic ß-cell dysfunction has been considered as the major culprit in the pathogenesis of diabetes, there is a paucity of studies to elucidate the molecular mechanism of Cd toxicity on ß-cells. METHODS: To unveil the toxic effect and its underlying mechanism of Cd exposure on ß-cells, we used an in vitro MIN6 cell model of environment-relevant Cd exposure to elucidate the crucial role of mtROS-mediated mitochondrial dysfunction and inflammatory response in suppression of pancreatic ß-cell insulin secretion. RESULTS: We uncovered that Cd treatment suppresses cell viability and induces insulin secretion dysfunction in a dose-dependent manner. Moreover, Cd exposure elicits the inflammatory response, as indicated by increased IL-1ß, IL-6 and TNF-α expressions. Significant elevations of intracellular ROS and mitochondrial ROS levels were detected as early as 3 h after Cd treatment. In mitochondrial function analysis, we demonstrated that Cd treatment induced mitochondrial dysfunction and disorder of mitochondrial fission indicated by the significant decline in ATP production, the marked depolarization of mitochondrial membrane potential, the decrease in mtDNA copy numbers, the suppressions of mitochondrial transcription factor A (Tfam) and mitochondrial fission-related gene Drp1 expressions. Pretreatment with TEMPO, a specific mitochondrial ROS (mtROS) scavenger, efficiently antagonizes Cd cytotoxicity, which is indicated by attenuating Cd-induced mitochondrial dysfunction, suppressing IL-1ß, IL-6 and TNF-α expressions, ameliorating insulin production dysfunction and preserving cell viability in MIN6 cells. CONCLUSION: Our study demonstrates that Cd exposure induces an inflammatory response through mtROS-mediated mitochondrial dysfunction. Antagonism of mtROS production might be an effective strategy to prevent pancreatic toxicity from environment-relevant Cd exposure.


Assuntos
Diabetes Mellitus , Células Secretoras de Insulina , Humanos , Secreção de Insulina , Cádmio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Mitocôndrias/metabolismo , Diabetes Mellitus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...